Ergodic Theory and Measured Group Theory
Lecture 12

An ivargle. $S:=\left\{a, a^{-1}, b, b^{-1}\right\} \quad \pi:=\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$
 is what was see is the Giigorclank-Nevo Kun.

Stationarity, let S he a state space $d \pi, P$ as before. We hint of the Markhor chain as a cachou walk on S, where m start with $s \in S$ with probabilif $=\pi(s)$ al wove to s^{\prime} with prob. $P\left(s, s^{\prime}\right)$, Thus, π is the critical distribution. What's the distribution after one iteg, i.. after one step, stat's tho prob int we ore in $s \in S$?

Hence $\pi_{1}=\pi \cdot P$.
anther two steps: $\pi_{2}=\pi_{1} \cdot P=\pi P^{2} \ldots$

Def. The Martoo chain finen by (π, P) is stationary it $\pi=\pi \cdot P$. Egiv., the distribation at what state the ralk is doessy change.

Marheo miasure on S^{N}. A Marhoo chcin on a state space S, densted by m, is a prob weasnue on ead S^{n}. For cun basic clopen sot $[\omega]$, whece $\omega \in S^{C N}$, lative $\mathbb{P}_{m}[\omega]:=m(\omega)$.
Then $\mathbb{P}_{w}[\omega]=\sum_{s \in S} \mathbb{P}_{m}[$ ws $]$, which shows hat \mathbb{P}_{m} i) a poobalitity bene cotencts to a prob mensure on all Boel suts by Caratteodocy's hooren.

Readl tht sift $s: S^{N} \rightarrow S^{N}$ is a Boal tanctien of we wart to understand then a Markor meas-a on S^{N} is s-invarid

Prop. A Marthor neesues $\mathbb{P}_{\text {m }}$ on $S^{\mathbb{N}}$ is itatiocary \Leftrightarrow it is shift-iiveciant.
Proof. Tate a havic set $[\omega]$ al wode ht $S^{-1}[\omega]=\bigcup_{t \in S}^{[t \omega]}$.

It's an exercize bo how tht $\mathbb{P}_{m}\left(S^{-1}[\omega]\right)=\sum_{t \in S} \mathbb{P}_{m}([t w])$ $\Leftrightarrow \pi P=\pi$.

Det. A stocha,tic watrix P (ie. cows add-up to 1 l a onnegetive) is called irreclucible if the preb. of trasitioning from any $a \in S$ do $a c y ~ b \in S$ in soce umker af steps is positive, i.e. $P^{k}(a, b)>0$ for some $k \geq 1$.

Prop. A Martov measure on S^{N} is shift-inurriatt al ergodic $\Leftrightarrow \quad \pi P=\pi$ al P is ireducible.

Butetov's theoren (2000). Let $\mathbb{F}_{d}=\langle s \geqslant\rangle$, d<al lat in be a Markov wasune on S^{N} that is strifly irreclacible al stationery. Thew tor every pap action of \mathbb{F}_{d} on (x, μ), every $f \in L^{\prime}(x, y)$,

$$
\text { (} \lim _{n \rightarrow \infty} \frac{\sum_{\partial \in B_{n}} f(r \cdot x) m(r)}{n\left(B_{1}\right) \geqslant n+1}=\mathbb{E}\left(f: B_{i n v}\right) a \cdot e^{\prime}
$$

This yeneralites the Gerigorchuk-Nevo theorem. Moreover, the acthal
stctement is tor actions of true semigroup (Griedey senereated).
Theoren (Zomback-Ts). Lf $F_{d}:=\langle s\rangle$, here $d<\infty d$ siske standerd squetric set of generctors. Let m be a stationary Marhor meainre on $S^{<N}$, suppocted on \mathbb{F}_{2} exachly. Then for ang panp adtras of \mathbb{F}_{d} on (x, r) al ang $f \in L^{\prime}\left(X_{2},^{\mu}\right)$,

$$
\lim _{m(\tau) \rightarrow \infty} \frac{\sum f(\gamma \cdot x) \cdot m(\gamma)}{m(\tau)}=\mathbb{E}\left(f \mid B_{i n v}\right) .
$$

shere τ canges over subtrees of $C_{a y}\left(\mathbb{F}_{d}, S\right)$ wostricing the idectity.

This is implied by our butwurd ergochic theare- the re vill now tey to state.

Backward ergodictheore. Le T be a ctbl-bo-ome papp transtornaction on (x, r). Recull hat the dasical ptuixe erg. thewren sajs thet $\forall \in \in L^{\prime}\left(x_{,} \mu^{\prime}\right)$, for a.e. $x \in X$,

Buckrord \geqslant theorem. $\lim _{n \rightarrow \infty}$ weighted averupe of f over $D_{n}^{\top}(x)=\mathbb{E}\left(f\left(B_{T}\right)\right.$, shere $D_{n}^{\top}(x)=\{x\} \cup T_{x}^{-1} \cup \ldots \cup T^{-h} x$.

Wat we the veights? By the Luzin - Naviko usiforcizaction theoren (learn DST!), there ane Borel right invorses $\left(\gamma_{n}\right)_{n \in \mathbb{N}}$ do T s.t. $T^{-1}(x)=\left\{\gamma_{n} x: n \in \mathbb{N}\right\}$, E.g. in case of T being the whit on $2^{N}, \gamma_{0}(x):=0 x \quad 1 \quad \gamma_{1}(x)=1 x_{x}$, These γ_{n} ane not weasure preseeviy, but we may assine WLOG (leacn DOST!) HA $\gamma_{n *} \mu \ll \mu$. Thas, here is a Redon-Nikodyn decivative $\frac{d \gamma_{n *} \mu}{d \mu}(x)$ hich ve trect as the weight of $\gamma_{n} \cdot x$ celative to $d \mu x$. That gires a Bonel fucction we : $E_{T} \rightarrow \mathbb{R}^{+}$mapping $(x, y) \mapsto \omega_{x}(y)$ satisfing $\omega_{x}(y) \cdot \omega_{y}(z)=\omega_{x}(z)$. This we corrects the nonivvariance of μ under the right-inuerges:

$$
\mu\left(\gamma_{n}(A)\right)=\int_{A} w_{x}\left(\gamma_{n} x\right) d \gamma(x)
$$

This 20 is called ha $R_{\text {adon-Nikodga }}$ cocyle of E_{T} with respect to μ. E.y. for the stift son $2^{(N)}$ with $\mu:=\left\{\frac{1}{3} \frac{1}{3}\right\}$

$$
\omega_{x}\left(0_{x}\right)=\frac{1}{3} \quad \& \quad \omega_{x}(1 x)=\frac{2}{3} .
$$

I. he above thearem, wishted-average of f over $\Delta_{n}^{T}(x):=\frac{\sum_{y \in T_{i}(x)} f(y) \cdot \omega_{x}(y)}{\omega_{x}\left(\Delta_{n}^{T}(x)\right)}$. Bene T presecres $\mu, \sum_{y \in T^{-1}(x)} \omega_{x}(s)=1$.
Thes, $\mathcal{V}_{x}\left(D_{n}^{\top}(x)\right)=n+1$. Then:

$$
\lim _{n \rightarrow \infty} \frac{1}{n+1} \sum_{y \in D^{\top}(y)} f(y) \cdot \omega_{x}(y)=\mathbb{E}\left(f \mid B_{T}\right) .
$$

Bacturerd crgodic with trees..... for a.e. x, lef τ_{x} range ouce teres behind x (is the direction of T^{\prime}) rooted at x, then:

$$
\lim _{\omega_{x}\left(C_{x}\right) \rightarrow \infty} \frac{\sum_{y \in T_{x}} f(y) v_{x}(y)}{\omega_{x}\left(t_{x}\right)}=\mathbb{E}\left(f \mid B_{T}\right) .
$$

