
Ergodic Theory and Measured Group Theory
Lecture 12
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Def . The Markov chain given by (it, P) is stationary if
IT -- IT . P

. Equiv . , the distribution at what state the walk

is doesn't change.

Markov measure on 51N
.

A Markov chain on a state
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,
denoted by m
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is a prob measure

on eat 5
.
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It's an exercise to show tht Rn (5%3)=-2112111-4)
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Def . A stochastic matrix P ( ice
. rows add -up to 1 I

nonnegative) is called irreducible if the preb . of transitioning
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any a c- S to
my
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steps is positive ,
i.e. P"(a. b) > 0 for some ktl
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Prop .
A Markov measure on

5N is shift - invariant at ergodic
<⇒ ñP= it I P is irreducible .

dot
Butcher 's theorem 12000)

.

let Ed =L Sylfal let m be a Markov
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statement is for actions of free semigroup / finitely generated.

Theorerttomback -Ts) . let Kd :<s > ,
here dead Sis the
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this is implied by our backward ergodic Keven tht ve rill
now try to state
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Backward ergodic throne .
let T be a ctbl - to -one paptransformation

an 111,9) . Recall tht the classical ptuiseerg.
throne- says that b- FE L'141)
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for a. e. ✗ c-X

,
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Backward theorem
. fig weighted average off over 1×1=11--11-18,1

,

¥÷¥E"there 1×1=1×1 UTI V. . .LT"x .

What are the weights? By the Lorain - Novikov unionization

theorem ( learn DST !)
,
there are Borel right inverses (% )uµµ
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"
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E.g. i - case of

T being the whit on 2N
,
8. G) := Ox I 91×1 :=lx.

These Nu are not measure preserving ,
but we

may aske

WLOG ( beam DST !) Wt Jn*Man .

Thus
,
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is a Radon- Nikody- derivative d,?F G) chick we treat

us the weight of mix relative to ×
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function W : Ei → IN mapping It, g) to 4,41 satisfying
Wxly) . wylz) = Watt) . Then me corrects the univariate

of 9 under the right - inverses :
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In the above theorem
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Backward ergodic with trees . .
. . . for a. e. ×

,
let tx range

over tree behind ✗ lie the direction aft " )
rooted at ✗

,
then :
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